
2024/03/12 20:45 1/2 LTrim and RTrim Functions (VB work-a-like)

FotS - http://fruitoftheshed.com/wiki/

LTrim and RTrim Functions (VB work-a-like)

The following functions return the input string with leading or trailing white-space characters (&H20 &
&H09) removed.

If you need the functions for MM+, MMX, PiCromite, or ARMMite you should use the versions shown
below. If you are using a MicroMite Mk2 (28 or 48 pin MX170), the below are fully compatible, but you
are better off using these versions. Being CFunctions, they are hugely faster (at least 10x and often
nearer 100x) - not precisely VB compatible as they only recognise a CHR$(32) as white space -
unlikely to be a problem.

Using CONSTs and a temporary string for the compare slice gives a good speed increase.
=LTrim$(RTrim$(“a”))takes only 11.5mS at 48MHz on MX170

Syntax:

 LTrim$(expression)
 RTrim$(expression)

Example:

 a$=RTrim$(userinput$)

Code:

'preamble
 Const sT$=Chr$(9), sS$=" "

 Function LTrim$(a$)
 Local Integer m
 For m=1 To Len(a$)
 If Not(Mid$(a$,m,1)=" " Or Mid$(a$,m,1)=Chr$(9)) Then
LTrim$=Mid$(a$,m): Exit Function
 Next
 LTrim$=""
 End Function

 Function RTrim$(a$)
 Local Integer n
 For n=Len(a$) TO 1 Step -1
 If Not(Mid$(a$,n,1)=" " Or Mid$(a$,n,1)=Chr$(9)) Then
RTrim$=Left$(a$,n): Exit Function
 Next
 RTrim$=""
 End Function

For those needing reduced timings without resorting to CSubs, in the alternative RTrim$() below,
some tricks which speed up things up by about 25% are used; Instead of removing padding from the
right by repeated string slicing, it analyzes bytes - stopping when it hits a non-space. It then POKEs
that position into the variable descriptor to truncate the string in one go. This method is fairly

http://fruitoftheshed.com/wiki/doku.php?id=mmbasic:ltrim_rtrim_cfunctions

Last
update:
2024/01/19
09:30

mmbasic:vb_work_a_like_ltrim_and_rtrim_functions http://fruitoftheshed.com/wiki/doku.php?id=mmbasic:vb_work_a_like_ltrim_and_rtrim_functions

http://fruitoftheshed.com/wiki/ Printed on 2024/03/12 20:45

advanced MMBasic and tweakers should be wary of changing the POKE commands. It is good to try to
understand what is happening though.

 Function RTrim$(aa$)
 Local Integer n,x
 local q$
 q$=aa$
 For n=Peek(Var q$,0) TO 0 Step -1
 x=Peek(Var q$, n)
 If Not(x=&o40 Or x=&o11) Then Poke Var q$, 0, n: Exit For
 Next
 RTrim$=q$
 End Function

As with most optimizations resulting in an increased code footprint, there is a sweet-spot where the
larger size can work against the workload. This seems to be a string of six spaces where the new
version is only slightly faster than the old (the inverse is true).

Note also, the pad characters are described in octal which is the fastest radix for the interpreter.

Such a trick is not possible with LTrim$() because we would need to copy the useful part of the string
down to start at position one in the string descriptor, likely voiding any gains and quite possibly
making things a lot worse on large strings.

From:
http://fruitoftheshed.com/wiki/ - FotS

Permanent link:
http://fruitoftheshed.com/wiki/doku.php?id=mmbasic:vb_work_a_like_ltrim_and_rtrim_functions

Last update: 2024/01/19 09:30

http://fruitoftheshed.com/wiki/
http://fruitoftheshed.com/wiki/doku.php?id=mmbasic:vb_work_a_like_ltrim_and_rtrim_functions

	[LTrim and RTrim Functions (VB work-a-like)]
	[LTrim and RTrim Functions (VB work-a-like)]
	[LTrim and RTrim Functions (VB work-a-like)]
	LTrim and RTrim Functions (VB work-a-like)

