2024/04/06 17:42 1/4 Small Strings

Small Strings

This module is part of the original MMBasic library. It is reproduced here with kind permission of Hugh
Buckle and Geoff Graham. Be aware it may reference functionality which has changed or is
deprecated in the latest versions of MMBasic.

This code is intended for early versions of MMBasic where strings were fixed at 255 characters in
length (but after PEEK and POKE were implemented). This is no longer the case but this code is
included here partly to maintain coherence with the old MMBasic library but also because it
demonstrates slicing strings and holding them in elements of an array - this could easily be adapted
to hold strings larger than 255 characters (which is a limit in V5.2). It also demonstrates the use of
PEEK & POKE to manipulate variables directly... a lot to study here.

Small Strings An MMBasic program by TassyJim - Oct 2012

Save space by using short strings. MMBasic strings are a fixed 255 bytes long. If you have a lot of
short strings, you can save a lot of valuable memory by using short strings. The code creates an array
of any (< 255) length strings. It would be a bit slow for intensive string manipulation but it can save
heaps of space.

Strings use 256 bytes. The first byte is the length of the string and the remaining 255 bytes are where
the actual string is stored. | used the same method so if you need strings 32 bytes long, you will have
to specify 33 as the size. In MMBasic you can specify the starting array number as zero or one. | have
stayed with one because that is the way | have always done it. | use the 'zero' location to store the
new array size to save on two variables.

An example that might be relevant to you.

I have a list of 652 Aussie towns. The longest name in the list is “Kingston South East” which is 19
characters long. An array of 652 X 20 bytes is needed. 652*20/256 = 51. My method creates an array
with 51 elements which uses about 13K - Full length strings would need 163K of memory. | also have
a list of 65K place names but that's too much for the Maximite to chew on!

| deliberately kept to single dimension arrays but it is easy to use the short array as 2 dimensions.
Most times a single dim array for the string and another standard numeric array for the rest of the
data. In the Towns example this numeric array will store the latitude and longitude of the towns.

It is thanks to Geoff implementing PEEK and POKE and giving us the location of the variable table that
| was able to do this.

The code makes use of PEEK and POKE so it does have the potential to cause havoc.

function makeSmall(aa,bb)

First we work out the number of normal string elements needed to store our small array. We then
create the holding array and find its memory address. The first 2 memory locations are used to store
the new array dimensions.

FotS - https://fruitoftheshed.com/wiki/

Last update: 2024/01/19 09:39 mmbasic_original:small_strings https://fruitoftheshed.com/wiki/doku.php?id=mmbasic_original:small_strings

function PutSmall(b, a$)

We pass the array element and the string for storing. If the string is too long, it is truncated without
any error message. The function returns -1 if an error occurs or the length of the string is incorrect.

function GetSmall$(b, a$)

Pass the array element and an optional error string. Return the string or the error string if array is out
of bounds

The code has been tested on various hardware but not as part of a big program. Jim

SSTRING.BAS

‘small strings by TassyJim
x=makeSmall(39,40) ' 38+1 bytes long, 40 elements
print x;" string elements used"
memory

for n =1 to 41

test$="Test string number "+str$(n)
x=PutSmall(n, test$)

print test$;" ";x

next n

print

print "Now we retrieve the strings”
for n =1 to 41

test$=GetSmall$(n, "woops!")

print n;" ";test$

next n

memory

end

function makeSmall(aa,bb) 'aa= string length, bb= array elements

local ascii$,g,n,c

makeSmall=-1

dim smallstring$(int(aa*bb/256)+1) ' allocate the required memory as a
normal array

for g=0 to 32 'look through a maximum of 32 variables

asciig=""

for n =0 to 32

c=peek (VARTBL, n+g*56)

if c=0 then exit for

ascii$=ascii$+chr$(c) ' retrieve variable name (end is chr$(0))

next n

SS1=peek (VARTBL,52+g*56)+peek (VARTBL,53+g*56)*256 ' string storage low word
SSh=peek (VARTBL , 54+g*56)+peek (VARTBL,55+g*56) *256 ' string storage high word
if ascii$="SMALLSTRINGS$(" then

poke SSh, SSl, aa 'store the max string length

https://fruitoftheshed.com/wiki/ Printed on 2024/04/06 17:42

2024/04/06 17:42 3/4 Small Strings

poke SSh, SS1+1, bb ' store the max number of elements

makeSmall=int (aa*bb/256)+1

exit for

endif

next g

end function 'returns -1 for error or number of normal string array elements
used

function PutSmall(b, a$) ' element number, string to store
local n,aa,bb
aa=peek(SSh, SS1) ' retrieve the max string length
bb=peek(SSh, SS1+1) ' retrieve the max number of elements
n=-1
b=int(b)
if b>0 and b<=bb then
if len(a$)>=aa then
a$=left$(a$,aa-1) ' trim the string to max length
endif
poke SSh, SSl+b*aa, len(a$) ' store the string length
for n = 1 to len(a$)
c=asc(mid$(a$,n,1))
poke SSh, SSl+b*aa+n, c¢ ' store the string
next n
endif
PutSmall=n ' returns length of string or -1 if subscript out of range
end function

function GetSmall$(b, a$) ' element number, error message if out of bounds
local n,aa,bb,s

aa=peek(SSh, SSl) ' retrieve the max string length
bb=peek(SSh, SS1+1) ' retrieve the max number of elements
b=int (b)

if b>0 and b<=bb then

as=""

s = peek(SSh,SSl+aa*b) ' size of element

for n =1 to s

k=peek(SSh,SSl+aa*b+n) ' build the string

a$=a$+chr$ (k)

next n

endif

GetSmall$=a$ 'returns string or error message

end function

From:
https://fruitoftheshed.com/wiki/ - FotS

Permanent link:
https://fruitoftheshed.com/wiki/doku.php?id=mmbasic_original:small_strings

Last update: 2024/01/19 09:39

FotS - https://fruitoftheshed.com/wiki/

https://fruitoftheshed.com/wiki/
https://fruitoftheshed.com/wiki/doku.php?id=mmbasic_original:small_strings

Last update: 2024/01/19 09:39 mmbasic_original:small_strings https://fruitoftheshed.com/wiki/doku.php?id=mmbasic_original:small_strings

https://fruitoftheshed.com/wiki/ Printed on 2024/04/06 17:42

	[Small Strings]
	[Small Strings]
	[Small Strings]
	Small Strings
	function makeSmall(aa,bb)
	function PutSmall(b, a$)
	function GetSmall$(b, a$)
	SSTRING.BAS

