
2024/04/15 14:37 1/9 Interrupt Driven RS232 Receive and Transmit

FotS - https://fruitoftheshed.com/wiki/

Interrupt Driven RS232 Receive and Transmit

This is my fully buffered, fully interrupt driven RS232 module for PIC16F877. It is does not waste any
time with sending characters and waiting for them to go (I hate routines like that!). With this set you
can Tx by filling a buffer and then set the Tx running and just get on with your application - the
interrupt will take care of everything and stop once the buffer is empty.

It relies on some macros which you'll find elsewhere in the library.

Enjoy

Preamble

 ; originally for PIC16F877 - you should be able to adapt it without
too much hassle

 ; *** Bank0/1/2/3 mirrored in all banks 0x70, 0xF0, 0x170, 0x1F0, 16
bytes
 ; accesible from all banks

 CBLOCK 0x70
 GENTEMP ; 0
 FLAGS ; 3 application and subsystem flags
 ; - 0 RX Buffer active - we have stuff in the
buffer
 ; - 1 RX Buffer OVF - the buffer has overflowed
 ; - 2 RS232 TXINPROGRESS flag - we must wait to
put a char in the buffer if set
 ; - 3 RX Buffer full - no more space - next char
will overflow
 ; - 4 RX buffer has recieved a <cr>
 ; - 5
 ; - 6
 ; - 7
 RXCHTEMP ; 4
 TXTEMPFSR ; 5 |
 TXTEMPSTATB ; 6 |
 TXCHTEMP ; 7 | context saving in TXBUFFQ
 TXTEMPSTAT ; 8 /
 SAVED_W ; 9 |
 SAVED_STATUS ; A | context saving in ISR
 SAVED_PCLATH ; B |
 SAVED_FSR ; C /

 ENDC

 ; *** Bank1 *** 80 bytes
 CBLOCK 0xA0
 RXSHUFFSRC
 RXSHUFFDST

Last
update:
2024/01/19
09:40

pic_asm:interrupt_driven_rs232_receive_and_transmit https://fruitoftheshed.com/wiki/doku.php?id=pic_asm:interrupt_driven_rs232_receive_and_transmit

https://fruitoftheshed.com/wiki/ Printed on 2024/04/15 14:37

 RXBUFFRDPTR
 RXBUFFWRPTR
 RXBUFF:RXBUFFSIZE
 ENDC

 ; *** Bank2 *** extra ram 96 bytes
 CBLOCK 0x110
 TXBUFFPTR ; when TXINPROGRESS=0; points to the free place
in the buffer for TXBUFFQ
 ; when TXINPROGRESS=1; used to step through the
buffer by TXBUFFUNQ
 TXBUFF: TXBUFFSIZE
 ; this buffer is a good size general purpose text
buffer. Although it is aimed
 ; at RS232 TX, it can be used to hold strings for
any reason
 ; binary and bcd outputs write here but the output
doesn't go anywhere
 ; until we say (or the buffer overflows)
 ENDC

 ; *** Bank3 *** extra ram 96 bytes
 CBLOCK 0x190
 CTR,II ; gp counters
 TF,TF2 ; pointers
 ENDC

ISR considerations

ISR:
 ORG 4

 PUSH

 ;BANK0 is implicit from the PUSH macro

 ; the handler routines are arranged in order of urgency

ISR_RX_IRQ: ; RS232 Rx char recieved
 SKIPHI PIR1,5
 GOTO ISR_RX_IRQRET
 LO PIR1,5 ; clear flag
 MOVFW RCREG
 GOTO RXBUFFQ ; in the RS232 module
ISR_RX_IRQRET:

ISR_TX_IRQ: ; RS232 Tx Complete
 SKIPHI PIR1,4
 GOTO ISR_TX_IRQRET

2024/04/15 14:37 3/9 Interrupt Driven RS232 Receive and Transmit

FotS - https://fruitoftheshed.com/wiki/

 CALL TXBUFFUNQ
ISR_TX_IRQRET:

ISREND:
 POP

 RETFIE

the actual RS232 routines

;
; RS232 Module
; Routines:
; TXBUFFQ Place the char in W in the buffer but doesn't
send anything. If you fill the buffer, it will trigger TXSTART
; and you'll be kept waiting while the
buffer empties, then your char is put in the buffer for next time.
; TXBUFFUNQ only called as part of the Tx ISR! ***do not
call*** Sets the Tx flag and so empties the buffer to the RS232 TX line in
the background.
; TXSTART Start TXBUFFUNQ - set the flag to begin
outputting chars from the buffer - usually causes an immediate interrupt
(because of TXEN=1)
; chars must be buffered. To output a
single char immediately:
; MOVLW "*" - my character
; CALL TXBUFFQ -
effectively a "print W" routine
; CALL TXSTART - char will
be output as part of the buffer
;
; RXBUFFQ This is the ISR handler for RX - places the Rx
byte in the buffer
; RXBUFFREAD Read a character from the buffer if there is one;
returns W=0 if not
; RXBUFFSHUFFLE Remove read chars from the buffer
; RXBUFFCLEAR Clear the buffer and reset all pointers & flags
;
;
; if the buffer fills during TXBUFFQ, TXSTART is called implicitly. Thus
TXBUFFQ can *always* take your char
; but you might have to wait for the buffer to empty. Cannot buffer chars
while sending - yet!
; buffer is empty after TXBUFFUNQ
;
; FLAGS,2 is a global "TX in progress flag"
;
; has specific register requirements - see the kernel

Last
update:
2024/01/19
09:40

pic_asm:interrupt_driven_rs232_receive_and_transmit https://fruitoftheshed.com/wiki/doku.php?id=pic_asm:interrupt_driven_rs232_receive_and_transmit

https://fruitoftheshed.com/wiki/ Printed on 2024/04/15 14:37

TXBUFFSIZE EQU D'80'+1 ;+1 allows full buffer size plus the zero
endstop
RXBUFFSIZE EQU D'40'

 #DEFINE TXINPROGRESS FLAGS,2 ; TX Buffer is being emptied -
no more queuing until finished

 #DEFINE RXBUFFACTIVE FLAGS,0 ; RX Buffer active - we have
stuff in the buffer
 #DEFINE RXBUFFEROVF FLAGS,1 ; RX Buffer OVF - the
buffer has overflowed - the data is unreliable because chars have been lost
 #DEFINE RXBUFFERFULL FLAGS,3 ; RX Buffer FULL - next char
will cause overflow

;*************************************
; INSIDE THE ISR!!!!
;*************************************
; un-queue the next character in the buffer. Buffer must end with zero byte
; if the buffer is empty (we don't want any more interrupts), ensure we have
; finished sending the last byte and disable the Tx and thus its interrupt.

TXBUFFUNQ:
 BANK2 ; all TX Buffers & ptrs are in BANK2, don't
use quick banks coz of INDF
 MOVLF LOW TXBUFF,FSR ; calculate the current
character position in the buffer
 MOVFW TXBUFFPTR
 ADDWF FSR ; here INDF is the nth charctaer in the
buffer
 MOVFW INDF
 JMPZ NOCHARS ; end of the data?
 BANK0F ; quick bank0 :
 MOVWF TXREG
 BANK2F ; quick bank2 :
 INCF TXBUFFPTR ; ... and increment the pointer for the
next char
TIDYEXIT:
 BANK0F
 RETURN

; we have a char zero - we are at the end of the data or have nothing to
send.
; We interrupted (we are here) so we need to disable TXEN but not until
; TRMT goes high
TXBUFFCLR:
NOCHARS:
 CLRF TXBUFFPTR ; clear the Tx buffer: reset the
pointer to 0...
 CLRF TXBUFF ; ... and clear the fisrt byte in the
buffer

2024/04/15 14:37 5/9 Interrupt Driven RS232 Receive and Transmit

FotS - https://fruitoftheshed.com/wiki/

 BANK1
 BTFSS TXSTA,TRMT ; check if the last character has
finished sending
 GOTO TIDYEXIT ; if not, just exit
 LO TXSTA,TXEN ; We finished sending so disable the Tx
to remove the interrupt
 LO TXINPROGRESS ; tell the world we are no longer
emptying the buffer
 GOTO TIDYEXIT ; and play nicely

; the RX buffer routine
; jumped-to from the ISR RX handler so consider it in the ISR
; W contains the recieved char
RXBUFFQ:
 BANK1
 BTFSC RXBUFFERFULL ; the buffer has space ?
 GOTO RXBUFFBROKE
 MOVWF RXCHTEMP ; save the char
 CP RXCHTEMP,D'13'
 BTFSC STATUS,Z
 HI FLAGS,4 ; current character is a <cr>
 MOVLW LOW RXBUFF ; point to the start of the buffer...
 ADDWF RXBUFFWRPTR,W ; add the pointer
 MOVWF FSR ; here INDF is the nth character in the
buffer
 MOVFF RXCHTEMP,INDF ; put the char in the buffer
 INCF RXBUFFWRPTR ; move the pointer along
 HI RXBUFFACTIVE ; signal we have stuff

 CP RXBUFFWRPTR,RXBUFFSIZE ; check for end of buffer
 SKIPNZ ; recieve buffer is not full
 HI RXBUFFERFULL ; you need to take some stuff out
of the buffer immediately
 GOTO TIDYEXIT

RXBUFFBROKE:
 HI RXBUFFEROVF ; oh dear... got a char but no room for
it
 GOTO TIDYEXIT

;*************************************
; OUTSIDE THE ISR!!!!
;*************************************
; this starts the TX buffer emptying. It does this by simply enabling TXIF
; then everything is handed off to the ISR.
TXSTART:
 BTFSC TXINPROGRESS ; jump back if we are already
doing it
 RETURN

Last
update:
2024/01/19
09:40

pic_asm:interrupt_driven_rs232_receive_and_transmit https://fruitoftheshed.com/wiki/doku.php?id=pic_asm:interrupt_driven_rs232_receive_and_transmit

https://fruitoftheshed.com/wiki/ Printed on 2024/04/15 14:37

 DI
 MOVFF STATUS,TXTEMPSTATB ; preserve the bank bits
 HI TXINPROGRESS ; tell the world we are emptying
the buffer
 BANK2
 CLRF TXBUFFPTR ; this pointer is used to empty the
buffer now
 BANK1
 HI TXSTA,TXEN ; we'll get an almost immediate
interrupt after EI and TXREG will be
 ; rapidly filled with the first 2 bytes, after
that we can expect interrupts
 ; every ~100uS. Don't try to put anything in the
TX buffer. If you do, a
 ; wait up to TXBUFFZIZE*100uS (while it empties)
will occur
 MOVFF TXTEMPSTATB,STATUS ; restore the bank bits
 EI
 RETURN

; queue a character in the next free space in the buffer. If the buffer
fills
; then it will call txstart to empty the buffer to make room.
; routine must be single threaded. If you write it from the ISR, chance it
happens
; while you were writing it anyway, regs get corrupted and it crashes the
system
TXBUFFQ:
 MOVWF TXCHTEMP ; save the char
 MOVFF STATUS,TXTEMPSTAT ; preserve the bank bits
 MOVFF FSR,TXTEMPFSR
 BTFSC TXINPROGRESS ; if we are emptying the
buffer, we must wait before we can proceed
 GOTO $-1

 DI ; other things use FSR
 BANK2 ; all TX Buffers & ptrs are in BANK2
 MOVLF LOW TXBUFF,FSR ; point to the start of the
buffer...
 MOVFW TXBUFFPTR ; add the pointer
 ADDWF FSR ; here INDF is the nth character in the
buffer
 MOVFF TXCHTEMP,INDF ; put the char in the buffer
 INCF TXBUFFPTR ; move thge pointer along
 INCF FSR ; point to the next position
 CLRF INDF ; always write a zero byte after each
char. automatically inserts EOB char
 CP TXBUFFPTR,TXBUFFSIZE-1 ; check for end of buffer
 CALLZ TXSTART ; transmit buffer is full so empty
it

2024/04/15 14:37 7/9 Interrupt Driven RS232 Receive and Transmit

FotS - https://fruitoftheshed.com/wiki/

 MOVFF TXTEMPFSR,FSR
 MOVFF TXTEMPSTAT,STATUS ; restore the bank bits

 EI ; interrupts potentially been delayed 30-ish
uS but it is tidy this way
 RETURN

;reset the RX BUFFER
RXBUFFCLEAR:
 DI
 MOVFF STATUS,RXCHTEMP ; preserve the bank bits
 BANK1
 CLRF RXBUFFRDPTR
 CLRF RXBUFFWRPTR
 LO RXBUFFERFULL
 LO RXBUFFEROVF
 LO RXBUFFACTIVE
 LO FLAGS,4
 MOVFF RXCHTEMP,STATUS ; restore the bank bits
 EI
 RETURN

; shuffle the top of the buffer down. from RXBUFFERPTR to zero
; this way we can recieve partial bits and still leave them in a
; state they can be parsed sequentially, i.e. we don't have to
; take everything in the buffer in one go
RXBUFFSHUFFLE:
 DI
 MOVFF STATUS,TXTEMPSTAT ; preserve the bank bits - using
TX temp stat !
 BANK1

BUFFEMPTY: ; this is exit for the read routine; if
there was nothing to
 ; read, either coz the buffer is empty or coz
the WR & RD pointers
 ; are the same, we try to do a shuffle to keep
things tidy
 MOVFW RXBUFFWRPTR
 JMPZ NOSHUFFLE ; if WR is already zero, then nothing
to do

;adjust the WR pointer
 MOVFW RXBUFFRDPTR ; WR pointer - RD pointer = new WR
pointer
 JMPZ NOSHUFFLE ; if RD is zero, we have no where to go

 SUBWF RXBUFFWRPTR ; otherwise compute a new place to
write to

Last
update:
2024/01/19
09:40

pic_asm:interrupt_driven_rs232_receive_and_transmit https://fruitoftheshed.com/wiki/doku.php?id=pic_asm:interrupt_driven_rs232_receive_and_transmit

https://fruitoftheshed.com/wiki/ Printed on 2024/04/15 14:37

; calculate the source & destination pointers in the buffer
 MOVLF LOW RXBUFF,RXSHUFFDST ; destination for the data
 ADDWF RXBUFFRDPTR,W
 MOVWF RXSHUFFSRC ; source of the data
;now go round in a loop until the pointer is at the end of the buffer+1
(after the INCF)
SHUFFLOOP:
 MOVFF RXSHUFFSRC,FSR ;move the byte
 MOVFF INDF,RXCHTEMP
 MOVFF RXSHUFFDST,FSR
 MOVFF RXCHTEMP,INDF

;calculate new positions
 INCF RXSHUFFSRC
 INCF RXSHUFFDST
 INCF RXBUFFRDPTR
 CP RXBUFFRDPTR,RXBUFFSIZE+1; have we reached the buffer end
 JMPNZ SHUFFLOOP ; go again if not

 MOVFW RXBUFFWRPTR ; otherwise, point to first position
(where our data
 SKIPNZ
 LO RXBUFFACTIVE ; if the WR pointer is 0 then the
buffer is empty
 LO RXBUFFERFULL ; we shuffled so the buffer can't be
full

NOSHUFFLE:
 CLRF RXBUFFRDPTR
 MOVFF TXTEMPSTAT,STATUS ; restore the bank bits
 MOVLW 0 ; this is here for the read exit
 EI
 RETLW 0

; read a character from the RXBUFFER
RXBUFFREAD:
 DI
 MOVFF STATUS,TXTEMPSTAT ; preserve the bank bits - using
TX temp stat !
 BANK1
 MOVFW RXBUFFWRPTR ; if the write pointer is zero,
nothing there
 JMPZ BUFFEMPTY

 SUBWF RXBUFFRDPTR,W ; compare RD & WR pointers, don't
care so long as they not the same
 JMPZ BUFFEMPTY ; if they are attempt a shuffle

 ;looks good, lets compute the buffer position and get our character
 MOVLW LOW RXBUFF ; destination for the data

2024/04/15 14:37 9/9 Interrupt Driven RS232 Receive and Transmit

FotS - https://fruitoftheshed.com/wiki/

 ADDWF RXBUFFRDPTR,W
 MOVWF FSR
 MOVFF INDF,DATAL
 INCF RXBUFFRDPTR ; move the read ptr along
 MOVFF TXTEMPSTAT,STATUS ; restore the bank bits
 MOVFW DATAL ; in W
 EI
 RETURN

; end RS232 module

From:
https://fruitoftheshed.com/wiki/ - FotS

Permanent link:
https://fruitoftheshed.com/wiki/doku.php?id=pic_asm:interrupt_driven_rs232_receive_and_transmit

Last update: 2024/01/19 09:40

https://fruitoftheshed.com/wiki/
https://fruitoftheshed.com/wiki/doku.php?id=pic_asm:interrupt_driven_rs232_receive_and_transmit

	[Interrupt Driven RS232 Receive and Transmit]
	[Interrupt Driven RS232 Receive and Transmit]
	[Interrupt Driven RS232 Receive and Transmit]
	Interrupt Driven RS232 Receive and Transmit

